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LETTER TO THE EDITOR 

A new definition of the local chemical potential in a 
semiconductor nanostructure 

P N Butcher and D P Chu 
Department of Physics. University of Warwick, Covenuy CV4 7AL. UK 

Received 14 September 1993 

Abstract A new definition is given for the local chemical potential & in a semiconductor 
nanosVUcWre which is Uansmilting currents. I t  is determined by the equation n(r, p ~ ,  pz, . . .) = 
n(r. VL, f i ~ .  . . .) where n denotes the electron density, r is the point at which f l ~  is required and 
p, denotes the chemical potential in the resenoir feeding terminal t This equation for &L avoids 
any reference to non-invasive voltage probes which have been used in previous definitions. It 
is used to discrimina2e between previous formulae which use the ideas. 

We have recently made calculations of the Hall resistance of a ballistic 2D electron gas 
which is confined in a quantum wire by hard walls 11.21. The calculations made use 
of a particular expression given by Imry [3] for the local chemical potential in the wire. 
Biittiker [4] derives a similar expression for the self-consistent electrostatic potential and 
other authors [5,6,7] have sometimes used a different expression for the local chemical 
potential. All these results are restricted to the low-temperature, linear-transport regime. 
Moreover, their derivations involve severe approximations. In this letter we give a precise 
definition of the local chemical potential in a nanostructure described in the one-electron 
picture. The definition is valid in the non-linear transport regime at all temperatures. In the 
low-temperature, linear regime it immediately reduces to the formula given by Imry [3]. 

Imry’s formula for the chemical potential at T in the low-temperature, linear regime is 

where 

Here t labels the terminals feeding the nanostructure, ut, is the group velocity of mode CY in 
terminal t and &(r) is the scattered wave generated by an incident wave of unit amplitude 
in a mode (Y in terminal t. All the quantities involved are evaluated at the equilibrium Fermi 
level. 

The derivation of equation (1) rests on a particular view of the behaviour of non-invasive 
voltage probes [9,10]. Akera and Ando [71 also use equation (1) for p(v )  in an electron 
waveguide. They justify the equation by envisaging a non-invasive probe which removes 
an infinitesimal current proportional to the local electron density in the mode considered. 
They [6,71 and Peeters [5] also calculate results for p ( r )  from equation (1) when the group 
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velocity factors are omitted from equation (Ib) .  In this case the probe is envisaged as 
removing an infinitesimal current which is proportional to the local current density in the 
mode considered. Both these hypothetical probes fit well into the one-electron formalism 
but it is not clear how either of them could be fabricated so as to behave in the manner 
assumed. 

Biittiker 141 calculates the self-consistent electrostatic potential U ( T )  in a nanostructure 
when currents are transmitted. He uses the Thomas-Fermi approximation and assumes 
strong screening. The physics behind the calculation is completely different from that 
used on the calculations of p ( r )  described above. Surprisingly, the result in equation (1) 
again but with p(r )  replaced by U@) in equation ( la) .  Neither of the approximations 
made in the calculation of U ( r )  are very appropriate to the one-electron formalism which 
is usually employed to describe the electronic behaviour of semiconductor nanostructures 
[4,8]. Moreover in [ I ]  and [2] we have calculated a Hall resistance from the numerically 
determined self-consistent electrostatic Hall potential which arises when current flows in 
the presence of a magnetic field. It behaves completely differently from the Hall resistance 
calculated from p ( r )  and, in particular, it does not exhibit the expected quantization. 

We now tum to the new definition of the local chemical potential. To do so we consider 
an arbitrary nanostructure in two different situations. Firstly, a non-equilibrium situation in 
which the chemical potential in the reservoir feeding terminal t takes an arbitrary value pt. 
We write n(r, pl ,  pz, . . .) for the electron density at r in this case. Secondly, we consider 
an equilibrium situation in which pt = po for all t The electron density at r in this case 
is simply n(r, po, . . .) which we abbreviate to nJr, /lo]. 

We may now define the local chemical potential at the point r by the equation 

neb-. p ( r ) l =  n(r, P I . P Z .  . ..) (2) 

i.e. p ( r )  is the chemical potential in the equilibrium system which creates the Same electron 
density at T as that which is actually found there in the non-equilibrium system. 

Equation (2) applies at all temperatures and all values of pt. It is easily solved for 
p ( r )  in the linear. low-temperature regime assumed in equation (1). Since the reservoirs 
are phase randomizing, we have 

where f ( ~ )  is a Fermi-Dim function with chemical potential pl and Nw = 2 /hv ,  is 
the density of states for mode a in terminal t. To obtain n,[r, p( r ) ] ,  we have only to 
replace every & ( E )  in equation (3) by the Fermi-Dim function f,,(~) which involves the 
local chemical potential p ( r ) .  According to equation (2). the difference between these two 
quantities must vanish. The integrals in the difference involve 

Here fo(c) is the Fermi-Dim function involving the equilibrium chemical potential E F  of 
the nanostructure before it was perturbed. The first approximation in equation (4) is valid in 
the linear regime because both pt and P(T)  remain close to E F .  The second approximation 
is standard at low temperatures. With the aid of equation (4) we find immediately that 
equation (2) reduces to equations (1). 
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The advantage of the new definition of p ( r )  is that it involves no assumptions or 
approximations which are not already involved in the Landauer-Biittiker formalism. No 
appeal is made to self-consistent fields, screening, or non-invasive probes of any sort. 
Moreover, the general formula (2) for p ( r )  is valid at high temperatures and in the non- 
linear regime. In the low-temperature, linear regime, the new definition reduces to Imry's 
formula (1) for the chemical potential. The Hall resistance calculated from y ( ~ )  in this 
regime exhibits the expected quantization [1,2,7]. The weighting factors pi involve vG' 
and, as a consequence of this, the Hall resistance is quenched as the Fermi level approaches 
the bottom of an excited subband [Z]. The alternative formula for p ( r )  in which ut;;' is 
omitted from pr also yields a quantized Hall resistance but it does not quench [5,6.7]. 

Quenching is found in crossed ballistic quantum wire structures both theoretically [ l l ]  
and experimentally [12-15]. However, the behaviour of the quench is strongly dependent 
on the geometry of the cross and it does not correlate well with the simple picture predicted 
by equation (1). Experimental studies of the effect of subband depopulation on the Hall 
resistance would be very interesting in this regard. 

This work was supported by the United Kingdom Science and Engineering Research 
Council. 
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